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Abstract 
The last decade has witnessed a change to more powerful incentive schemes and the 
adoption by a large number of regulators of some form of price cap regimes. The efficiency 
frontiers literature tackles the problem of measuring the X factor in a price cap regime with an 
RPI – X rule. However, that literature has by large focused solely on the theoretical aspects 
involved in the estimation of an efficient frontier. A thorough discussion of the empirical 
application of the theoretical concepts is, in a sense, missing. In this paper we address this 
issue and try to elaborate upon the applied aspects of efficiency measurement. 
 
Resumen 
La última década ha presenciado un cambio hacia esquemas más poderosos de incentivos, 
y la adopción por parte de gran número de reguladores de una regulación por precios 
máximos. La literatura de fronteras de eficiencia trata el problema de la medición del factor X 
en un régimen de precios máximos con una regla de RPI – X. Sin embargo, esta literatura se 
ha centrado en los aspectos teóricos de la estimación de una frontera. En cierto sentido, se 
carece de una discusión profunda sobre la aplicación de aquellos conceptos teóricos. En 
este trabajo encaramos esta discusión e intentamos profundizar en los aspectos empíricos 
de la medición de la eficiencia. 
 

Códigos JEL: L5, L9. 

 

 

 

I. Introduction 

For decades, rate-of-return regulation has been the dominant practice in the regulation 
of utilities. This method, although allowing the firm to recover its costs and resulting in a 
lower cost of capital (due to the lower risk borne by the firms), provided little incentives for 
cost minimization among regulated firms. The last decade has witnessed a change to more 
powerful incentive schemes and the adoption by a large number of regulators of some form 
of price cap regimes.1 The main purposes of a switch from rate-of-return regulation to price 
cap regulation have been to increase the incentives for firms to minimize their costs, and to 
ensure that, eventually, users benefit from these cost reductions –typically within 3-5 years 
after a regulatory price review. This objective requires the measurement of the expected 
efficiency gains that would lead to cost reductions at the firm level. The renewed attention 
given to productive efficiency is one of the main reasons for the increase in efforts to 
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measure efficiency in regulated sectors. Efficiency measures are no longer a side show as 
they were under rate-of-return regulation.  

Efficiency gains of a firm can come from two main sources: shifts in the frontier 
reflecting efficiency gains at the sectoral level, and efficiency gains at the firm level reflecting 
a catching up effect. The latter are the gains to be made by firms not yet on the frontier. 
These firms should be able to achieve not only the industry gain (the shift of the frontier) but 
also specific gains offsetting firm specific inefficiencies. A regulator should bear in mind this 
decomposition when carrying out an efficiency analysis. 

The efficiency frontiers literature tackles the problem of measuring both components of 
the X factor in a price cap regime with an RPI – X rule. However, that literature has by large 
focused solely on the theoretical aspects involved in the estimation of an efficient frontier. A 
thorough discussion of the empirical application of the theoretical concepts (which is the 
main interest of regulators) is, in a sense, missing. In this paper we address this issue and try 
to elaborate upon the applied aspects of efficiency measurement in a regulatory context. 

The paper outline is as follows. Section II deals with the choices faced by a regulator 
willing to evaluate regulated firms’ performances. Section III presents the consistency 
conditions that should be met by the efficiency measures to be useful to regulators, and 
discusses how to apply them in a regulatory setting. Finally, in Section IV, conclusions to this 
work are made. 

 

II. Regulatory choices 

An efficiency measure is, broadly speaking, the distance of the observed practice to the 
efficient frontier. The regulatory task of measuring efficiency would be greatly simplified if this 
frontier were known. Unfortunately, the regulator has no knowledge of the efficient frontier 
and thus has to estimate it. This should constitute the main concern of the regulator when 
attempting to measure the efficiency of regulated firms, for different estimates of the frontier 
would lead to potentially distinct assessments (as would different distance concepts). 

There are a number of choices a regulator has to make in order to be able to estimate 
an efficient frontier, and the options she makes will potentially give rise to different 
performance evaluations. It is important that the regulator can count on a sound set of 
arguments in favor of the choices made. The main goal of this study is to provide with the 
empirically relevant arguments that support each decision.  

The first decision is how to construct the efficient frontier. There are basically two 
alternatives: (i) a theoretically defined function based on engineering knowledge of the 
process of the industry, or (ii) an empirical function constructed on estimates based on 
observed data. Next comes a decision about the relevant efficiency concept to be measured: 
(i) productive (or overall), (ii) technical2, or (iii) allocative. A choice related to the previous one 
has to do with the kind of relationship that is going to be estimated: (i) a cost function 
(productive efficiency estimates), or (ii) a production function (only technical efficiency 
measures). 

There still remain other choices to be made. Is the frontier going to be estimated with 
parametric or non-parametric techniques? Is the distance to the frontier going to be attributed 
to inefficiency, or to random noise, or to some combination of both?  

Having solved all the questions regarding the methodology to be employed, the 
regulator still has to decide upon the variables that should be included in the analysis. Which 
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are the outputs of the industry? Which are the inputs? Are there variables beyond the firms’ 
control?  

The efficiency literature has dealt with these questions in depth, although in too much a 
theoretical way. Regulatory application has not been such an important issue. In the 
remainder of this section we discuss the pros and cons of all the preceding alternatives, not 
only from a theoretical point of view, but also from an empirical regulatory standpoint. 

II.1. Theoretical function or best-observed practice 

Modern regulatory regimes are focused on improving efficiency through incentive 
mechanisms. Among these, yardstick competition is a must. Yardstick competition, originally 
proposed by Shleifer (1985), requires the horizontal separation of some of the stages of a 
natural monopoly in order to obtain comparative information on relative efficiency levels of 
the firms. This information can then be used to set up tariffs for the regulated companies, 
allowing some efficiency gains to be passed on to consumers and preserving at the same 
time incentives for the firms to reduce their own costs. In other words, the regulator acting as 
the principal prefers to have several agents in order to reduce the existing asymmetry of 
information. In exchange for this superior knowledge some economies of scale and of scope 
are lost when the activity is separated into different units. If the firms were to be compared to 
a theoretically defined yardstick, however, the regulator would still be bearing the costs of 
lost scale economies, but it would not receive the benefits of increased information. In such a 
case, it would be better to compare the original natural monopoly (not divided) to that 
yardstick. Therefore, in those processes involving horizontal break-up of a natural monopoly, 
the best observed practice seems the natural choice.  

Farrell (1957), in his path-breaking paper, argues in favor of using the best-observed 
practice:  

“In a first place, it is very difficult to specify a theoretical efficient function 
[...]. Thus, the more complex the process, the less accurate is the 
theoretical function likely to be. Also, partly because of this, and partly 
because the more complex the process, the more scope it allows to 
human frailty, the theoretical function is likely to be wildly optimistic. If 
the measures are to be used as some sort of yardstick for judging the 
success of individuals plants, firms, or industries, this is likely to have 
unfortunate psychological effects; it is far better to compare 
performances with the best actually achieved than with some 
unattainable level” (Farrell, 1957, p. 255). 

In accordance to Farrell’s suggestion, the growing practice for regulatory purposes is to 
analyze individual performances in relation with best-observed practice. This, for example, is 
the approach used in UK for regulating the water utilities, in Costa Rica for setting transport 
tariffs, and in Hungary to regulate telecommunications companies. Furthermore, in Norway, 
where there are sixty transmission and two hundred distribution utilities, regulators have 
taken affirmative steps to employ this approach in setting rates. The Norwegian Resources 
and Energy Administration has devised a software that it distributes to the regulated utilities 
so that they can perform their own efficiency analysis, which is then used in setting utilities 
rates (Reiter et al., 1999). However, there are exceptions. In Chile (water sector), Peru 
(electricity) and Spain (electricity), for example, the frontier is calculated on the basis of 
engineering data instead of relying on best practice.3 

The regulator should bear in mind that if efficiency is measured against best observed 
practice the result would be a measure of relative efficiency, where the firm is being 
compared with the other firms in the sample. Therefore, being found 100% efficient does not 
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imply that a firm cannot enhance its performance; it just means that no other firm in the 
sample in performing as well as it is. 

II.2. Cost versus production functions4 

Productive or overall efficiency is the firm’s ability to produce an output at minimum 
cost. To achieve that minimum cost the firm must produce the maximum output given its 
inputs (technical efficiency) and choose the appropriate input mix given the relative price of 
its inputs (allocative efficiency). Thus, productive efficiency requires both technical and 
allocative efficiency. Therefore, productive inefficiency will tend to be higher than technical 
inefficiency.  

Related to the decision of what kind of efficiency concept is going to be used is the type 
of relation that is going to be estimated: a production function or a cost function. A production 
function displays the produced quantities as a function of the inputs employed and gives 
information on technical efficiency only, whereas a cost function shows the total cost of 
production as a function of the level of output/s and the input prices and allows for the 
estimation of the overall productive efficiency.5 Whereas technical efficiency is a purely 
physical notion that can be measured without having to impose a behavioral objective on 
producers, cost or overall efficiency is an economic concept whose measurement requires 
the imposition of an appropriate behavioral objective (Kumbhakar and Lovell, 2000). 

Up to this point we have discussed the main theoretical considerations. However, 
several other considerations need to be made to arrive at an application that is both feasible 
and reasonable, and not a mere artificial construct. 

When choosing between the estimation of a production function or a cost function, it is 
important to bear in mind the peculiarities of the sector one is studying. An important feature 
of the regulated utilities is that, in general, the firms are under obligation to provide the 
service at the specified tariffs. Therefore, the firms must meet the demand for their service, 
and are not able to choose the level of output they will offer. Given the exogeneity of the 
output levels, the firm maximizes profit simply by minimizing the cost of producing a given 
level of output. Under this argument, a cost function specification is the correct one.6  

However, cost function estimation has some drawbacks. Among these is the difficulty 
to obtain accurate information on input prices. Moreover, the estimation of cost frontiers 
involves the utilization of variables measured in monetary units, which could be a serious 
problem if one wishes to make international comparisons. Production functions, instead, only 
require variables measured in physical units (i.e. homogeneous among countries –or at least 
much more homogeneous). As a theoretical argument, one could add that whenever there is 
public ownership, the firms, in general, will not seek profit maximization as their main goal. 
As Pestieu and Tulkens (1990) argue, public enterprises do not share the same objectives 
and constraints that their private counterparts do, so their relative performance should only 
be compared on the basis of technical efficiency (a common ground).7  

Although a model of economic efficiency (basically a cost minimization problem) needs 
price data (Lovell, 1993), a way around the problem of unavailable input prices is that of cost 
efficiency measurement, where a simple single input-multiple output model is built, using a 
measure of costs as the single input. The model yields as a result the proportion in which 
costs could be reduced, without changing the level of output/s.8 Such an approach has been 
applied, for example, by Vanden Eeckaut et al. (1993) and Ramos and Sousa (1998) to 
municipalities in Belgium and Brazil, respectively; and by DTe (2000) to the Dutch network 
and supply businesses in the electricity sector.  
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If a cost function approach were chosen, it would still be necessary to define what kind 
of cost is going to be measured. If substitution possibilities exist whereby capital may be 
substituted for other inputs (and vice versa) one may find that companies with higher capital 
costs may have lower operating costs whereas companies with lower capital inputs may 
have higher operating costs. That is, regulating the industry using a restricted definition of 
costs (e.g. operating expenditures, OPEX, or capital expenditures, CAPEX) could lead to an 
inefficient allocation of resources.  

Moreover, if OPEX is the chosen cost concept, care has to be given to the fact that 
different companies can pursue different accounting rules, and therefore include some costs 
items in OPEX that other firms do not consider, and this may bias the results (as DTe (2000) 
found). In such circumstances to judge comparative efficiency solely on the grounds of 
operating costs may give a misleading picture of the overall efficiency of companies with 
respect to the use of all inputs (Bosworth, Stoneman and Thanassoulis, 1996).  

On the other hand, working with total costs in a panel data setting can have some 
problems if firms are not observed in a sufficiently large number of years, covering at least 
one investment cycle. In such a case, it could prove better to work solely with OPEX, for 
these would make a more homogeneous cost measure by avoiding the differences in total 
costs provoked by irregular investment outlays (CAPEX) of the firms in such a short period.9  

II.3. Parametric versus non-parametric frontiers 

Another decision regarding estimation refers to whether the frontier is assumed 
parametric or non-parametric. Parametric methods impose an a priori functional form to the 
frontier, whereas non-parametric methods do not. Parametric methods estimate a production 
or cost function by means of econometric tools. The most used non-parametric approach is 
the so-called Data Envelopment Analysis (DEA), which involves the use of linear 
programming techniques. In this methodology firms are considered efficient if there are no 
other firms, or linear combination of firms, which produce more of at least one output (given 
the inputs) or use less of at least one input (given the outputs). The DEA methodology, 
introduced by Charnes, Cooper and Rhodes (1978), seeks to determine which units (firms) 
form an envelopment surface or efficient frontier. The firms that lie on (determine) the surface 
are considered efficient, whereas the firms below the surface are termed inefficient, and their 
distance to the frontier provides a measure of their relative (in)efficiency.  

There exist basically two types of envelopment surfaces (Ali and Seiford, 1993), the so-
called constant returns to scale surface (CRS) and variable returns to scale surface (VRS). 
Their names indicate that an assumption about the type of returns to scale is associated to 
the choice of either surface. The efficient frontier thus constructed will be different according 
to the returns to scale assumption adopted. 

One assumption involved in traditional DEA estimations is convexity of the set of 
feasible input-output combinations (Lovell, 1993). If this assumption is not robust, however, 
another methodology could be used: FDH (“free disposal hull”). FDH envelops the data more 
tightly and has a more restrictive notion of domination than DEA: a firm is dominated in FDH 
by a single observed efficient firm, whereas it is dominated in DEA by a hypothetical firm 
obtained from a linear (or convex) combination of a set of efficient producers. An advantage 
of FDH is that in practice no frontier needs to be computed. A potentially serious flaw of the 
methodology is that of “efficiency by default”, i.e., a potentially large number of firms could be 
declared efficient not because they are efficient, but because of the absence of firms with 
which the dominance comparisons need to be made.  

Though this problem is reduced in DEA calculations, it does not disappear. An aspect 
worth noting is that the efficiency measures obtained with DEA can be very sensitive to the 
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number of variables included in the model. As the ratio number of variables/sample size 
grows, the ability of DEA to discriminate among firms is sharply reduced, because it 
becomes more likely that a certain firm will find some set of weights to apply to its outputs 
and inputs which will make it appear as efficient (Yunos and Hawdon, 1997). That is to say, a 
lot of firms might be labeled 100% efficient not because they dominate other firms, but just 
because there are no other firms or combinations of firms against which they can be 
compared when there are so many dimensions.10 This problem seems to be important in 
applied research: Rodríguez Pardina, Rossi and Ruzzier (1999), for instance, estimate a 
production function for a cross section of 53 firms in the electricity distribution sector in South 
America, finding that in the variable returns to scale model more than half of the utilities were 
100% efficient, even though the model has only five variables.  

DEA technical efficiency models can be oriented (i) to the proportional reduction of 
inputs –input orientation- or (ii) to the proportional augmentation of outputs –output 
orientation-, or they can be not oriented (in which the input reduction and the output 
augmentation needed to place a firm on the frontier are calculated). It is important to notice 
that –once a type of surface is chosen- the form of the efficient frontier will not change 
whichever the orientation selected; i.e. every orientation will identify the same firms as being 
efficient or inefficient. The differences between orientation will be seen in the efficiency 
scores, for each differently oriented model uses a different distance concept.  

The choice between different orientations will depend on the particular features of the 
sector under study; e.g. if output is exogenous, considering output-oriented or not oriented 
models would be nonsense, for no increase in outputs can be achieved. In those 
circumstances, only an input orientation would be meaningful.11 

The principal advantage of non-parametric approaches is that no functional form of the 
frontier is imposed a priori on the data. A drawback is that only a subset of the available data 
defines the efficient frontier, while the rest of the observations have no impact on the shape 
of the envelopment surface. Furthermore, non-parametric methods estimate the efficient 
frontier without making any assumption about the distribution of the error term. The 
estimations, therefore, lack statistical properties, thus rendering impossible the hypothesis 
testing. The parametric models, in turn, although allowing for hypothesis testing, might label 
inefficiency something that actually is a mispecification of the model. In order to account for 
this problem it is preferable to estimate a flexible function, like the translog, which is in fact a 
second order approximation to any arbitrary functional form.12  

Parametric frontiers can be estimated by some variant of Ordinary Least Squares 
(OLS) or by Maximum Likelihood (ML). OLS estimates an average function whose constant 
term is then corrected to transform the estimated function into a frontier. Therefore, the 
estimation of the technological parameters gives equal weights to both efficient and 
inefficient firms. ML, on the other hand, incorporates a priori information on the distribution 
asymmetry of the error term, hence giving more importance to the efficient firms in the 
estimation of the slope parameters. 

Bardhan, Cooper and Kumbhakar (1998), in a simulation study using Monte-Carlo 
methods, found that parametric methodologies yield estimates of the technological 
parameters that are significantly different from the true parameters, and attribute this 
outcome to the mixture of efficient and inefficient observations. To overcome this 
inconvenient, Arnold, Bardhan, Cooper and Kumbhakar (1996) suggest a joint use of 
parametric and non-parametric techniques in a two-stage procedure: a first stage involves 
the utilization of DEA to identify efficient and inefficient firms, and in a second stage, the firms 
identified as efficient are incorporated as dummy variables in a regression. Bardhan, Cooper 
and Kumbhakar (1998) found that this two-stage DEA-dummy variable approach yielded 
estimates that did not differ significantly from the true parameter values. 
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II.4. Deterministic versus stochastic approaches 

Once decided upon the kind of frontier to be estimated (cost or production) and the 
estimation technique (mathematical programming or econometrics), the next step is to 
determine whether such frontier is to be considered deterministic or stochastic.13 If the 
activity frontier is deterministic all the firms share the same frontier and every discrepancy 
between the individual firm performance and the frontier is considered due to inefficiency, 
thus completely ignoring the possibility of a single firm performance being affected not only 
by inefficiencies in the management of its resources but also by factors absolutely beyond its 
control and not considered as regressors. Besides, deterministic approaches are very 
sensitive to the presence of outliers. A single outlier (due for example to measurement 
errors) can have deep effects on the estimations, and this outlier problem cannot be solved 
just by increasing the sample size. Though this problem will be present both in DEA and 
parametric estimations, the effect is quite different in both approaches: in DEA estimates, the 
outlier problem has the effect of changing the entire frontier, shifting both the technology 
parameters and the efficiency measures. In the parametric approaches, though having a 
similar effect on the efficiency measures, the outlier problem has almost no effect on the 
slope parameters since they are estimated using information on all firms, not just the ones on 
the frontier. 

Estimation of deterministic frontiers involves the utilization of a one-sided error term, 
which implies that it is possible to define accurately the minimum necessary cost to achieve a 
given level of output. Therefore, the actual cost is simply the least cost plus an inefficiency 
term (bound to be equal to or greater than zero by definition).14  

It is worthwhile noting that the deterministic techniques are in a sense polar opposites 
of Ordinary Least Squares (OLS) estimates: OLS attributes all variation in output not 
associated to variations in inputs (production approach) to random shocks, whereas the 
deterministic approaches attribute all variation in output not associated to variations in inputs 
to technical inefficiency. An alternative to these polar cases would be a model that attributes 
variation in output not associated to variations in inputs to some combination of random 
shocks and technical inefficiency. 

Following this idea, the works of Aigner, Lovell and Schmidt (1977) and Meeusen and 
van de Broeck (1977) came into the scene, proposing the so-called stochastic frontiers, 
which are based on the idea that the deviations from the frontier could be partially out of the 
control of the analyzed firm. This approach uses a mix of one-sided and two-sided errors; 
i.e., given an output level, there exists a minimum feasible cost, but this minimum is 
stochastic and not precise. The idea is that the external events which influence the cost 
function are normally distributed (the firm being faced to favorable or unfavorable conditions 
with given likelihood) instead of being constant. Once considered the likelihood of statistical 
noise, what remains is termed inefficiency.  

It is worthwhile noting that this decomposition between statistical noise and inefficiency 
is precisely the nature of the moral hazard problem faced by an imperfectly informed 
regulator. That is, the regulator must establish which fraction of the observed differences 
between the firms’ costs is due to inefficiency and which to external factors over which the 
firms have no control. The probability that some inefficiencies are erroneously classified as 
statistical noise is an important drawback in the regulatory context (Pollitt, 1995). 

In the stochastic vs. deterministic dilemma OFWAT (the water and sewerage regulator 
in UK) explored both possibilities15 in a number of research papers published for the 1994 
Periodic Review and concluded that the deterministic approach was the most appropriate. 
This is because stochastic frontier models rely on too large a number of assumptions, which 
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may not hold for the information collected from the companies. The deterministic approach 
does not require such strong assumptions (OFWAT, 1998).16  

II.5. Panel data models 

In general the stochastic frontier models with cross-sectional data are exposed to three 
serious drawbacks (Schmidt and Sickles, 1984). Firstly, the inefficiency term estimations, 
although unbiased, are not consistent, which really poses a problem if one bears in mind that 
the goal of the regulator is the estimation of the sample firms’ inefficiency. Secondly, both 
model estimation and separation between inefficiency and noise call for specific assumptions 
to be made about the distribution of either term. The most used distribution for the 
inefficiency term in the empirical work is the half-normal distribution. This distribution makes 
the majority of the firms almost completely efficient, though there is no theoretical reason that 
prevents the inefficiency to be distributed otherwise.17 Finally, it might be incorrect to assume 
that the inefficiency is independent from the regressors: if a firm knows its efficiency level, 
this could affect its input choices.18 

The preceding problems, which appear under the cross-section stochastic 
methodology, are potentially solvable using panel data. The first drawback can be handled if 
T (the number of observations on each firm) is large enough. However, this final benefit of 
having access to panel data can be overstated since in practice many panels are relatively 
short (Kumbhakar and Lovell, 2000). Second, having access to panel data allows the 
researcher to avoid any assumption about the distribution of the inefficiency by, instead, 
assuming that firms’ inefficiency is constant over time. Finally, not all panel data estimation 
techniques require the assumption of independence of the technical inefficiency term from 
the regressors. Basically this kind of models can be derived using two different deterministic 
estimation techniques: fixed-effects model and random-effects model. The fixed-effects 
model does not require the assumption of independence between the inefficiency term and 
the regressors, but at the cost of not allowing the inclusion of constant regressors (which are 
likely to appear in the utilities sector). In the presence of time invariant attributes of the firms 
that are omitted from the model, these would be captured in the fixed effects, mixing with the 
(in)efficiency term, when they should be classified otherwise. The random-effects model, in 
turn, allows the inclusion of time invariant regressors in the model, although at the cost of 
assuming that the inefficiency term is independent from the regressors.19  

Both the fixed-effects and random-effects models are deterministic, in the sense that all 
the differences between the firms’ effects are denoted inefficiency. However, if the 
researcher is willing to assume some distribution of the efficiency term, and to assume 
independence between the efficiency effects and the regressors, a stochastic Maximum 
Likelihood estimate is feasible. This approach is widely used in empirical analysis 
(Kumbhakar and Lovell, 2000).  

The fixed-effects and random-effects models assume that the inefficiency is constant 
over time, but this assumption can be relaxed. If one finds the assumption that inefficiency is 
time invariant untenable (and it becomes increasingly so as the number of time series 
observations becomes larger), some structure of how the inefficiency evolves across time 
could be imposed. One possibility is the Cornwell, Schmidt and Sickles (1990) specification, 

which allow the individual effect to evolve over time as a quadratic function (ui,t = ƒi,1 + ƒi,2 t + 

ƒi,3 t
2). That is, the inefficiency term is a quadratic function of time, but the form is not the 

same across firms. The Cornwell et al. specification is very flexible, but is very demanding in 
terms of data. When the sample is not big enough other specifications have been proposed. 
For example, Battese and Coelli (1992) specify the inefficiency as an exponential function (uit 
= exp[-♣(t-Ti)]ui, where ♣ is the only parameter to be estimated). In this specification, if ♣ is 

positive then the model shows decreasing inefficiency effects, while if ♣ is negative the 
inefficiency effects are increasing (Coelli et al. 1998). A disadvantage of this specification is 
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that the ordering of the firms according to the technical inefficiency effects is the same at all 
time periods. The main advantage is that it is less data demanding than the Cornwell et al. 
(1990) model. 

When panel data is available, frontier estimation methods (both parametric and non-
parametric) can be used to obtain estimates of total factor productivity (TFP) growth. As 
Coelli et al. (1998) express, some of the advantages of following a frontier approach to TFP 
growth are that it does not require price data nor behavioral assumptions, it does not assume 
that all firms are fully efficient, and it allows the decomposition of TFP measures into 
technical change and technical efficiency change. This would permit the regulator the 
estimation of both components of an efficiency gain: gains from shifts in the frontier 
(technical change) and gains at the firm level reflecting a catching up effect (technical 
efficiency change). This decomposition is specially useful while setting the X factor in a 
regulatory framework of price cap and RPI-X regulation. 

In all econometric panel data models technological change can be estimated by 
including a time trend (and eventually its square) in the regressor vector. The inclusion of a 
time trend reflects what is known as Hicks neutral technical change. That is, the intercept of 
the function shifts but the slope does not.20  

II.6. The choice of variables 

A frontier model has two parts: the “core” of the model, and the environmental 
variables. The (theoretically determined) core is formed by the inputs, in a production 
function approach, or the outputs and the input prices, in a cost function approach. The role 
of the environmental variables is to capture external factors that might influence the firms’ 
performance and are not directly controllable by them. Some examples of environmental 
variables include ownership differences, such as public/private, and location characteristics 
(see Fried, Schmidt and Yaisawarng, 1995). Most of the efficiency literature fails to recognize 
this decomposition of frontier models in regulated utilities. 

As stated above, the initial specification for the core of the model is subject to 
theoretical considerations21, and should be accepted or rejected as a whole, implying that it 
might be the case that some non-significant variables remain in the final model. 

Environmental variables, on the other hand, are subject to different considerations: 
since these are not theoretically determined, they will be included in the final model only if 
they are statistically significant. The strategy would be to begin with an over-parameterized 
model followed by a stepwise regression procedure, to ensure that all the non-significant 
environmental variables are dropped from the final model. However, special care should be 
taken as regards the selection of environmental variables to be included in the initial (over-
parameterized) model:  

(i) In the case of ownership, for example, its inclusion as an explanatory variable gives 
information on the differences in efficiency for each ownership type. A set of dummy 
variables that measure these differences should not be included in a model intended for 
yardstick competition, for ownership effects would be netted out from the efficiency 
measures, thus punishing the firms belonging to the most efficient ownership type. If 
yardstick comparisons are to be made, the model should be estimated without these 
variables, and then the results (the relative efficiency measures) should be cross-checked 
with ownership information. 

(ii) Geographical characteristics, on the other hand, are the kind of variables that 
should in general be included in the initial model, especially if the location of the firm is given 
by the concession contract (as is the usual case with regional monopolies). Because the 



 10 

firms cannot control their geographical environment, the efficiency measures should take into 
account that constraint.  

(iii) Special attention must be taken in relation to the inclusion or not in the initial model 
of quality related variables. If quality standards do not exist, then the omission of quality 
variables in the model might cause some firms to appear with lower costs not because they 
are more efficient but because they provide a good or service of inferior quality. However, the 
regulator must have in mind that the inclusion of quality variables could result in quality 
standards above reasonable levels that would be passed on to the consumers through 
higher tariffs. If quality standards do exist, the optimal outcome results if the amount of 
potential fines is included in the computed costs.22 

The idea behind the proposed stepwise procedure is that only environmental variables 
that are found to have a significant impact on costs should be recognized in the estimation of 
the efficient cost frontier. Non-significant variables do not help to explain variability in costs, 
and hence, should not be accepted by the regulator in an analysis that (precisely) attempts to 
establish the acceptable level of the costs incurred by the firms. This is the procedure 
followed, for example, by Stewart (1993) in his applied research done for the OFWAT.23  

This, of course, does not mean that all significant variables have to be included in the 
model: only the significant and theoretically acceptable variables should be included. In 
practical terms this means that yardstick competition requires the regulator to recognize all 
those external factors that can affect costs (or the productive process). In other cases the 
possibility exists for the firm to engage in strategic behavior by explaining away firm specific 
inefficiencies as a state of nature (CRI, 1995): if, as we propose, an econometric approach 
were chosen to determine the final model, a firm could always find a variable that only it 
possessed, which, in statistical terms, would work as a dummy variable in the regressions, 
thus rendering it efficient –or more efficient.24  

Of course, in many cases there are good reasons why some firms do not follow an 
efficient pattern, but once the regulators have done this initial sorting out, the burden of proof 
should be on the regulated companies. If they are indeed making the best effort to minimize 
cost, they should have enough information under their exclusive control to show that they are 
doing so and they should provide it to the regulator. This information should then be 
incorporated in any future work the regulators would use to compare companies, and 
become a component of standard informational requirements imposed on all companies 
(Crampes et al., 1997).  

In this way, the initial model used as a yardstick is not so determinant, since the firms 
can challenge the proposed model until every part (firms and regulators) agree about the 
final model. In this sense, yardstick competition can be viewed as a “learning by doing” 
iterative process in which both firms and regulators learn while playing the game.   

 

III. Consistency Conditions 

A problem faced by regulators willing to apply frontier studies consists in the number of 
methods available for efficiency measurement of individual firms. The problem is far more 
serious if the different approaches give mutually inconsistent results.25 The question then 
arises as to whether efficiency studies are empirically useful. 

To overcome this problem, Bauer et al. (1998) propose a set of consistency conditions 
which must be met by the efficiency measures generated by the different methodologies, if 
these results are to be of some use to regulatory authorities.26 For the comparison between 
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approaches to make sense, the efficiency studies should refer to the same sample of firms 
(i.e. every methodology must consider the same firms and time period) and should make use 
of the same efficiency concept (see the section on regulatory choices above). The advantage 
provided by a consistency analysis is that the regulator can avoid the choice between 
approaches to efficiency measurement; plainly, the consistency conditions call for the use of 
several methodologies and for the cross-checking of results. 

Specifically, the consistency conditions proposed by Bauer et al. (1998)27 are: 

(i) the efficiency measures generated by the different approaches should have 
similar means and standard deviations; 

(ii) the different approaches should rank firms similarly; 

(iii) the different approaches should identify, in general, the same firms as the 
“best” and the “worst”;  

(iv) the efficiency measures should be reasonably consistent with other 
performance measures; 

(v) individual efficiency measures should be rather stable over time, i.e. should 
not vary significantly from one year to the other; and 

(vi) the different measures should be reasonably consistent with the expected 
results from the industry, given the conditions under which it operates. In the particular case 
of regulated firms, for example, it is expected that those firms regulated under a price cap 
mechanism will be more efficient than those regulated under rate-of-return regulation. 

Broadly speaking, the first three conditions determine the degree to which the different 
approaches are mutually consistent (i.e., if they are not met, individual efficiency measures 
generated by a single procedure would be somewhat subjective, and hence unreliable), 
whereas the remaining conditions establish the degree to which the different efficiency 
measures are consistent with reality. In other words, the first three conditions say if the 
different approaches will give the same answers to the regulators, while the last three 
conditions say if it is likely that these answers are correct. 

If internal consistency is achieved (conditions (i) to (iii) are verified) the regulator can be 
confident that the figures (scores) obtained from the efficiency analysis are correct, and thus 
may proceed directly to setting an X factor for every firm under study.   

If condition (i) is not met, but conditions (ii) and (iii) are, the regulator still has a rough 
ordering of the firms by their efficiency levels at hand, and therefore can discriminate the X 
factor by firms, starting from a common figure for this factor (perhaps one provided by a TFP 
growth study). Indeed, identifying the rough ordering of efficiency levels by firms is usually 
more important for regulatory policy decisions than measuring the level of efficiency itself 
(Bauer et al., 1998). OFWAT (1998), for instance, makes a discrimination of the X factor 
according to the following banding convention:  

= Band A: well below predicted expenditure (less than 85% of C) 

= Band B: below predicted expenditure (85-95% of C) 

= Band C: around predicted expenditure (within 5% of C) 

= Band D: above predicted expenditure (105-115% of C) 

= Band E: well above predicted expenditure (more than 115% of C) 

where C is the estimated cost obtained from an Ordinary Least Squares regression; so, the 
bands are constructed using an average function, not a frontier. This procedure has the 
advantage that it is not sensitive to the presence of outliers (if the bands were constructed as 
a distance from the best practice, a best performance that was in fact an outlier would distort 
the banding allocation of the other firms). 
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If nor the first nor the second consistency condition are met, but the third condition is 
verified (consistency in identifying best and worse performers), it would still be possible to 
use an alternative approach: to publish the results. This is the approach followed in the UK in 
the water and electricity sectors. The idea is to inform the users and allow them to compare 
prices and services across regions and give them a reason to put pressure on their own 
operator if it is not performing well. 

The last three consistency conditions would be like “external criteria” for the evaluation 
of the different approaches. They can also be useful to choose between methodologies if 
there is no agreement among them. For example, it is often the case that parametric 
methods are consistent with each other, as are non-parametric methods, but there is lack of 
consistency between parametric and non-parametric approaches.28 In this situation, 
conditions (iv) to (vi) could help in establishing which approach gives more correct answers, 
thus discarding every other methodology on the basis of a sound argument of inconsistency. 

 

IV. Conclusions and Suggestions 

In this paper we have dealt with the empirical application of the theoretical concepts 
developed by the efficiency measurement literature. We have considered a number of 
choices the regulator has to face when performing an efficiency analysis, and we have 
thoroughly discussed the regulatory implications of each particular choice.  

We are now able to propose an efficiency measurement procedure that takes into 
account every applied consideration made in this work. This procedure involves the following 
steps: 

(i) identify a set of comparable firms; 

(ii) construct the theoretical core of the model: this step involves the selection of 
the kind of relationship that will be estimated (cost or production function), 
which has an implicit choice about the relevant efficiency concept; it also 
involves the definition of which variables are outputs and which are inputs; 

(iii) select all the environmental variables that could potentially affect performance; 

(iv) regress the initial model and follow a stepwise procedure to ensure that all the 
non-significant environmental variables are dropped from the final model; 

(v) run a DEA model with the inputs, outputs and environmental variables selected 
in previous steps (final model), to identify efficient and inefficient firms;29 

(vi) regress the final model, including a dummy variable which takes a value of one 
if the firm is found efficient in step (v), and zero otherwise; 

(vii) apply the consistency condition analysis. 

Once the regulator has completed this procedure, and is confident about her results, 
she can send the efficiency evaluation to each regulated firm, and invite responses from 
them. In this way, regulators can seek the involvement of the firms in the benchmarking 
process to ensure that the data on which the analysis is based is reliable and that the results 
are comprehensible and justifiable. Yardstick competition would then result in a “learning by 
doing” iterative process in which both firms and regulators learn while playing the game.  
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Notes 

1 See the discussion in Green and Rodríguez Pardina (1999). 

2 Technical efficiency can be further decomposed into “pure” technical efficiency, scale 
efficiency and congestion efficiency, as suggested in Färe et al. (1985), Pollitt (1995) and 
Coelli et al. (1998). 

3 The Spanish electricity distribution sector case is analysed by Grifell-Tatjé and Lovell 
(2000), who compare actual performance not against typical best practice standards, but 
against ideal engineering standards established by an international consultant. Unexpectedly 
(for us) they find that managers are more cost efficient than the ideal practice developed by 
the consultant. 

4 There are other types of functions that can be estimated (e.g. revenue function, profit 
function). However, cost and production functions are the most common and we only deal 
with these in this paper. 

5 In econometrics applications, if one wishes to conduct separate estimations on both types 
of inefficiency it is necessary to make some additional assumptions. In mathematical 
programming applications, it is necessary to run two separate programs for each firm: one to 
estimate technical efficiency and another for overall efficiency; allocative efficiency comes as 
a residual. 

6 In an econometric setting, an additional advantage stemming from the use of cost functions 
has to do with their flexibility to adapt to situations in which more than one output is 
produced. The analysis of multiproduct firms is straightforward in linear programming 
applications, even in the context of production relationships. 

7 Besides, in public firms, prices may be neither available nor reliable (Charnes, Cooper and 
Rhodes, 1978). 

8 This advantage only comes at a cost: neglecting prices, one can no longer estimate 
allocative efficiency. 

9 See Vanden Eeckaut et al. (1993), Ramos and Sousa (1998) and DTe (2000). 

10 This problem is more important with DEA models with variable returns to scale than in 
models assuming constant returns to scale. 

11 This problem is analogous to estimating a production function when output is exogenous. 

12 Other flexible functional forms are the generalized Leontief and generalized Cobb-
Douglas. Guilkey, Lovell and Sickles (1983) compare all of them and conclude that the 
translog form performs at least as well as the other two and provides a dependable 
approximation to reality provided reality is not too complex. 

13 Though theoretically there have been advances in the development of non-parametric 
stochastic frontiers -the stochastic DEA models proposed by Land, Lovell and Thore (1993) 
and Olsen and Petersen (1995)-, in practice the mathematical programming is largely 
nonstochastic (Kumbhakar and Lovell, 2000). 

14 In a production function approach the inefficiency term is non-positive. 

15 OFWAT called the deterministic approach “regression analysis”, but the main idea is the 
same. 

16 OFWAT (1998), however, recognised “that the differences between predicted and actual 
expenditures, even after adjustment for specific factors did not translate directly to 
differences in efficiency [...]. Therefore the approach adopted was to set company specific 
efficiency targets that would move individual company expenditure towards those of the best 
performers, over a five-year period. The amount of movement was taken to be around 25%-
35% of the differences in predicted costs.” 
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17 A common criticism of the stochastic frontier method is that there is no a priori justification 
for the selection of any particular distribution form for the technical inefficiency effects (Coelli 
et al., 1998). Some authors attempted to address this criticism by specifying more general 
distributional forms, such as the truncated normal distribution (Stevenson, 1980) and the two-
parameter gamma (Greene, 1990). However, the ultimate question is: do distributional 
assumptions matter? In an attempt to answer this question, Kumbhakar and Lovell (2000) 
find that, though sample mean efficiencies could be sensitive to the distribution assigned to 
the one-side error component, it is not clear whether the ranking of producers by their 
efficiency scores, or the composition of the top and bottom efficiency score deciles, is 
sensitive to distributional assumptions. 

18 If the regulator monitors the relative efficiency of the firms across time and adopts the 
procedure of submitting the results of the efficiency analysis to the firm for discussion, then it 
becomes more likely for this assumption to be violated. 

19 See footnote 18. 

20 That is, the marginal rate of substitution does not change. In a production function model 
the non-neutral technical change can be calculated including the interaction terms between 
inputs and time. 

21 The applied literature is a good starting point in the identification of the theoretical 
variables to be included in the core of the model. A survey of this literature is available from 
the authors on request. 

22 The water regulator in UK, for example, makes a strong case against financing 
discretionary quality improvements through higher prices, and adds that though in their 
response to the companies’ market research some customers have said they would like to 
see improvements in levels of service, they have shown considerable resistance to pay 
higher prices for these improvements. Customers on lower income brackets encounter 
particular difficulties in paying higher prices and, therefore, the regulator will only make 
provision for enhanced service standards in future price limits where there is very clear 
evidence, across the whole spectrum of customers, of willingness to pay (OFWAT, 1994). 

23 A similar procedure can be found in Pollit (1995), who suggests that regression analysis be 
used to test the significance of the variables considered, in order to keep the number of 
variables as low as possible in DEA applications. Another applied work that recommends the 
use of regression techniques to identify cost drivers is DTe (2000), though a technique other 
than econometric tests is finally employed for model selection, due to the small size of the 
sample (which could produce misleading results in regression analysis). Kittelsen (1999) 
applies an stepwise procedure to discard some variables (inputs and outputs) from his model 
of the Norwegian Electricity Distribution Utilities. 

24 In a DEA setting a firm could make itself appear as more efficient by including additional 
environmental variables, because it would be difficult to find comparable firms in the set 
when an increasing number of dimensions is considered in the analysis (and not because it 
is actually efficient). 

25 Weyman-Jones (1992, p. 440) warns about the likelihood of regulatory debates being 
taken to the legal arena whenever the regulator and the firms disagree on the correct 
methodology used in efficiency measurement. 

26 Although there exists a vast literature on efficiency measurement in the utilities sector, few 
studies try to compare the efficiency measures obtained with the different approaches. 
Among them are the works of Pollitt (1995), Ray and Murkherjee (1995) and Burns and 
Weyman-Jones (1996). Neither of these authors, however, makes a consistency analysis as 
formal as the one in Bauer et al. (1998). Kittelsen (1999), in an applied paper on the 
regulation of the Norwegian electricity distribution utilities, states as a condition to apply DEA 
yardstick competition that the results be validated by statistical tests and compared with 
other econometric methods. 
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27 The paper by Bauer et al. (1998) deals with the consistency of efficiency measures in the 
U.S. banking sector and finds mixed evidence as regards the fulfilment of the consistency 
conditions. Rodriguez Pardina et al. (1999) in a study of the electricity distribution sector in 
South America analyzed the set of conditions proposed by Bauer et al. (1998), finding that 
the different approaches are consistent in their means, rankings and identification of the 
same firms as the “best” and the “worst”. 

28 See Bauer et al. (1998) and Rodriguez Pardina et al. (1999). 

29 As suggested in Arnold et al. (1996) and Bardhan et al. (1998). 
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